
ARTICLE

On the Use of General Control Samples
for Genome-wide Association Studies:
Genetic Matching Highlights Causal Variants

Diana Luca,1,7 Steven Ringquist,2,7 Lambertus Klei,3 Ann B. Lee,1 Christian Gieger,4,5

H.-Erich Wichmann,4,5 Stefan Schreiber,6 Michael Krawczak,6 Ying Lu,2 Alexis Styche,2

Bernie Devlin,3 Kathryn Roeder,1,7,* and Massimo Trucco2,7

Resources being amassed for genome-wide association (GWA) studies include ‘‘control databases’’ genotyped with a large-scale SNP array.

How to use these databases effectively is an open question. We develop a method to match, by genetic ancestry, controls to affected

individuals (cases). The impact of this method, especially for heterogeneous human populations, is to reduce the false-positive rate,

inflate other spuriously small p values, and have little impact on the p values associated with true positive loci. Thus, it highlights

true positives by downplaying false positives. We perform a GWA by matching Americans with type 1 diabetes (T1D) to controls

from Germany. Despite the complex study design, these analyses identify numerous loci known to confer risk for T1D.
Introduction

Systematic GWA studies are critically dependent on the

availability of very large and well-characterized control

populations. With a different degree of structure in mod-

ern populations, ideally, multiple, diverse, and large con-

trol populations will be used. As platforms for GWA be-

come standardized, numerous sources of pregenotyped

control individuals are becoming available. Typically,

many more controls are available than cases, and we be-

lieve these controls can be advantageous for discovering

risk loci and for controlling the false-positive rate. For ex-

ample, the data analyzed here include 416 Americans of

European descent diagnosed with T1D (MIM 222100)

and a control database of 2159 individuals from different

regions of Germany.

Ancestry matching based on nongenetic variables1 and

SNP genotypes2 for genetic-association studies has been

proposed previously. Our approach, which we call genetic

matching or GEM, goes further in that we show how to

systematically obtain favorable matching by using a panel

of genetic markers and how to determine outlying individ-

uals as well as individuals that cannot be successfully

matched to others in the available registry. By simulations,

we will contrast matching to a commonly used method for

controlling the confounding of ancestry, namely the use

of eigenvector analysis3 via Eigenstrat4 to identify predic-

tors of ancestry; for the real data, we contrast matching

to both Eigenstrat and identification of common ancestry,

such as European American.
The Ame
We propose matching on the basis of genetic similarities

derived from eigenvector decomposition (EVD), making

our initial analyses similar to that taken in Eigenstrat.4

The best known form of matching is matched pairs

(pMatch); however, assuming the criterion for matching

are sufficient to remove the effects of unmeasured con-

founding, an alternative to matched pairs known as full

matching (fMatch) is optimal.5 Consider a scenario in

which three cases (a, b, and c) and three controls (x, y,

and z) fall into two distinct ancestral clusters (a, x, and y)

and (b, c, and z). Matching pairs creates three strata,

(a and x), (c and z), and (b and y), but the pair (b and y)

does not define a homogeneous strata. Alternatively,

fMatch minimizes the total distance between individuals

within strata with the constraint being that each stratum

includes a single case and one or more controls, or vice

versa, i.e., clusters (a, x, and y) and (b, c, and z). Of the

two, fMatch is optimal because case and control samples

are unlikely to have identical distributions of ancestry,

and in this situation, forcing each case to match a unique

control leads to suboptimal matches. (pMatch can be very

useful, however, in designing follow-up studies that require

preselection of case and control samples.)

In large association studies, the sample typically includes

some individuals with widely varying ancestry. EVD is

highly sensitive to outlying observations. A few points

lying far from the majority of the data can determine mul-

tiple principal axes of the representation. Indeed, outliers

can obscure the discovery of axes that potentially separate

the data into distinct types. For this reason, individuals
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having highly unusual measures on any of the major eigen-

vectors are removed.4 Likewise, with matching it is necessary

to determine which strata span an unusual distance leading

to ‘‘unmatchable individuals.’’ If the controls are more nu-

merous than the cases, they typically span a larger range of

ancestries than cases, and it should be possible to find one

or more controls similar to each case. Conversely, some cases

may have to be removed to account for the effects of struc-

ture. In this work, we formalize the notions of outlying

and unmatchable individuals and propose a method to dis-

cover the key axes that describe the population structure.
Material and Methods

A Sketch of the Matching Procedure Employed

by GEM and Displayed in Figure 1
The illustration (Figure 1) shows the steps involved in matching

genotyped cases and controls. To begin, create an L SNPs and N

individuals matrix of scaled allele counts from which the EVD

is computed (see Appendix). The top D eigenvectors form a
Figure 1. Flowchart for Genetic-Match-
ing Algorithm Illustrated with Portions
of the T1D Data
Distances between individuals are deter-
mined by the major axes of variation in
the EVD representation. Outlier removal,
illustrated by (A), is critical for revealing
the subtle variability between individuals
of similar ancestry. After major outliers
are removed, clustering is used for discov-
ery of homogeneous clusters; four distinct
clusters are displayed here (B), plotted as
principal component axes. Two of these
clusters are displayed before ([C], left)
and after ([C], right) rescaling of axes.
Some observations are not outliers, but
they are unmatchable ([D], left); for exam-
ple, the isolated case in the center of the
plot. Rescaled distances are compared to
distances expected in homogeneous sam-
ples ([D], right) to identify cases and con-
trols that can not be successfully matched.
Association analysis is performed on match-
ed strata so that the effects of population
structure could be removed (not shown).

D dimensional map describing the ‘‘ances-

try’’ of each individual, i.e., the mapping

of the ith subject in each dimension is de-

termined by the ith element the in dth ei-

genvector. The dth eigenvalue determines

the importance of the dth dimension in

the new representation of the data. Indi-

viduals of similar ancestry map to similar

values in the eigenvectors associated with

large eigenvalues (Figure 1). Eigenvectors

associated with small eigenvalues have lit-

tle or no genetic interpretation.
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For a homogeneous population, the largest eigenvalues provides

the basis for a significance test for population structure (see Patter-

son6 and Appendix). Applying this test with significance level a ¼
0.01, we determine the number of dimensions D to be used in the

eigenvector representation. The EVD determines the distance be-

tween individuals on the basis of the top D eigenvectors, serving

as coordinates or dimensions, and eigenvalues serving as weights

to exaggerate differences in dimensions of greater importance

(see Appendix).

If the data have many outliers, D will be relatively large, and

the principal eigenvectors will be poorly estimated.7 Outliers (Fig-

ure 1A) can be removed with visual diagnostics or the criterion

from Eigenstrat;4 namely, remove any individuals with ancestry

coefficients greater than 6 SDs in at least one of the D eigenvector

axes. After removing outliers, the EVD should be recomputed. If

the estimated dimension, D, is still greater than two or three, we

suggest finding the distance between nearest pairs of controls

and cases. A subject with ancestry that does not lend itself to

matching will appear as an outlier via this criterion and should

be removed (see the T1D example).

To determine how to match and which individuals are unmatch-

able, we rely on the distribution of distances between individuals
2008



in a homogeneous population. For a homogeneous sample, the

distribution of distances will depend on sample size N and the

number of loci L. By using simulations, we can find the distribution

of distances for a homogeneous population. These simulations also

yield the distribution of eigenvalues for a homogeneous sample of

size N.

Real populations are heterogeneous but can be modeled as

mixtures of relatively homogeneous subpopulations (Figure 1B).

We wish to represent these subpopulations so that the between-

subject distances within a homogeneous subpopulation are compa-

rable to expectation if the entire sample were homogeneous. To do

so, we need to model the underlying population substructure and

adjust real data so that they are scaled properly (Figure 1C); other-

wise, the between subpopulation variance will cause distances be-

tween individuals to be poorly calibrated (Figure 1C). We do this

via a two-stage algorithm involving clustering and scaling. In stage

one, we cluster individuals that appear to have common ancestry.

This is done iteratively, by addition of clusters and then testing

for structure (see Appendix for testing) until each cluster is homo-

geneous. We use Ward’s algorithm8,9 to form hierarchical groups

of mutually exclusive subsets based on the first D axes of the

EVD. We need a stopping rule for choosing K, the number of clus-

ters. Start with K ¼ 2 and apply the test for population structure

on each of the clusters (a ¼ 0.001). Homogeneous clusters, as

judged by the significance test, are set aside, and Ward’s algorithm

is applied only to the remaining data. Repeat this process, increas-

ing K until all the clusters are homogeneous or consisting of too few

observations (~20). Finally, we rescale interindividual distances as

described in the Appendix so that they are comparable to distances

found in a homogeneous population. At this rescaling step, un-

matchable individuals are uncovered and removed (Figure 1D).

After outliers and unmatchable individuals are removed from

the sample, recalculate the EVD and determine D. Reverting

back to unscaled eigenvectors, find the distance between cases

and controls on the basis of the Euclidean distance with D dimen-

sions as described in the Appendix. Match strata with either full

match or pair match. Software implementing matching algo-

rithms is widely available (e.g., we use the optmatch function in

the statistical package R). Then, the data can be analyzed for dis-

ease and SNP association by conditional logistic regression. Other

covariates can be entered into the model at this point.

T1D Analyses
Purified samples of genomic DNA were obtained from the Genetics

of Kidneys in Diabetes (GoKinD) study10 and from T1D patients

recruited at the Children’s Hospital of Pittsburgh (CHP) and Uni-

versity of Pittsburgh Medical Center. The study employed a human

gene-chip microarray (Affymetrix, Santa Clara, CA) for evaluation

of genetic variants with DNA samples from T1D (case) participants

with genetic typing data obtained from the KORA11 and PopGen12

‘‘control’’ cohorts.13 Genotyping results were obtained with the

same Affymetrix 500K SNP typing array; however, assays for case

and control cohorts were performed independently. Case partici-

pants (n ¼ 416) were recruited in the U.S., with self-declared Euro-

pean ancestry and T1D; control participants (n ¼ 2159) were

citizens of Germany recruited independent of phenotype (Table 1).

Recruitment of participants at CHP was governed by the human

subjects protocol approved by the University of Pittsburgh Institu-

tional Review Board (IRB #011052: New Advanced Technology

to Improve Prediction of Type 1 Diabetes). CHP patients (n ¼ 28)

consented to providing 10 ml blood obtained by vein puncture as

well as a brief medical history relating to onset of T1D. The GoKinD
The Am
cohort (n¼ 394) was recruited independently from the CHP cohort

by collaborative efforts of the Juvenile Diabetes Research Founda-

tion, National Institutes of Health, and U.S. Center of Disease Con-

trol.10 Material from the GoKinD cohort was provided as solutions

of DNA, purified from lymphoblastoid cell lines or from whole

blood. DNA solutions were provided as 50 ml aliquots containing

~100 ng/ml DNA per aliquot dissolved in 20 mM NaCl and 1 mM

EDTA (pH 7.5). DNA from the CHP samples were obtained from

whole blood with methods described in Ringquist,14 and genotyp-

ing was performed by Affymetrix Services Laboratory (Affymetrix)

with GeneChip 500K arrays. All of the genotype data from GoKinD

samples generated by this project will be submitted to an accessible

database, such as dbGaP or T1Dbase (see Web Resources).

All T1D samples had a sufficient completion rate (>95%) for

inclusion, as did almost all KORA and PopGen samples. Initially,

genotypes for all three samples were called with the BRLMM algo-

rithm.15 By using three criteria for genotype QC per SNP—greater

than 90% genotype calls, test statistic for Hardy-Weinberg yields

p value > 0.005, and minor allele frequency R0.05—we removed

~140,000 SNPs and retained 360,000 for the T1D sample, similar

to other studies. When we contrasted the T1D samples to the con-

trol samples, we noted SNPs with very different allele frequencies

that were not in or near known T1D loci. Inspection of the allele

frequencies showed that the control allele frequencies were re-

markably similar to HapMap frequencies (see Web Resources),

but the corresponding genotype clusters for the T1D samples

had undesirable features.

We tried various ways to improve the genotype calls. First, we

looked for substantial differences between the calls by using the

two algorithms employed by Affymetrix, namely DM and BRLMM.

Although some discrepancies were noted, we did not see a material

improvement in the data by eliminating this small set of loci. Next,

because we had the Affymetrix ‘‘cel’’ files for the PopGen control

sample, we called all of these genotypes for PopGen and T1D

together by using both the DM and BRLMM algorithms. Again,

this process eliminated some problematic loci, but the results

were not compelling. Finally, we tried the new Bayesian calling

algorithm, CHIAMO.16 This algorithm led to a marked improve-

ment for the genotype calls, as determined by inspection of the ge-

notype clusters. For our data, we found that analyzing the PopGen

and T1D data together (batch) yielded slightly better results than

analyzing the two data sets as complementary strata, so these

were the data we reported. Because we had greater confidence in

the BRLMM calls for chromosome X, we reported those calls for

X-linked SNPs. Because the KORA sample came to us only with

Table 1. Characteristics of Case and Control Participants

Case Participants Control Participants

Demographic

Characteristics CHP GoKinD KORA POPGEN

Number of singletons 28 394 1644 500

Nominal European

American (%)

100% 100% — —

German residents (%) — — 100% 100%

Male gender (%) 50% 46.7% 49.5% 51.8%

History of Diabetes

Type 1 diabetes (%) 100% 100% — —

Mean age at T1D

Diagnosis (yr)

12.7 5 7.9 12.2 5 7.1 — —
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genotypes called by the BRLMM algorithm, we used those geno-

types for that data set.

Preliminary quality control consisted of a six-step process that

reduced the number of cases to 415, controls to 2112, and SNPs

to 284,216. Step 1: Removed a case who was a clear outlier. Step 2:

Removed 32 controls who had greater than 5% missing genotypes.

Step 3: Removed 90,732 SNPs with >5% noncall rate in at least

one of the three samples. Step 4: Removed 105,658 SNPs with mi-

nor allele frequencies less than 0.05 in either control sample. Step

5: Removed 1972 SNPs with FST > 0:02 (estimated for the two Ger-

man control samples). Step 6: Removed 18,427 SNPs that violated

Hardy-Weinberg equilibrium (p < 0.005) in either of the control

samples.
Results

Simulations

We compare three approaches to correct for the effects of

structure: Eigenstrat and GEM with fMatch and pMatch.

Although we compare their size (i.e., rate of false positives)

and power, these approaches are not direct competitors.

The GEM methods are designed to limit analysis to strata

that are chosen a priori, whereas Eigenstrat aims to remove

the effects of structure in the analysis stage.

Allele frequencies for the subpopulations were generated

with the ‘‘Balding-Nichols’’ model17 (see Appendix), with

allele frequencies varying uniformly between 0.05 and

0.5. To correct for structure, L reference SNPs were gener-

ated. Of these SNPs, 99% had a minor amount of variability

across subpopulations (FST ¼ 0:01), and 1% had substantial

differentiation (FST ¼ 0:1). Null or causal candidate SNPs of

three levels of FST were generated: Model (1) strongly

differentiated SNPs, FST ¼ 0:1; Model (2) moderately differ-

entiated SNPs with FST ¼ 0:03; and Model (3), modestly dif-

ferentiated SNPs with FST ¼ 0:01.

Ten panels of independent reference SNPs, with L rang-

ing from 96 to 100,000, were generated. For each of these

panels, we simulated 1000 independent causal SNPs and

1000 independent null candidate SNPs. We repeated this

analysis for models (1), (2) and (3) and for six choices of

L. Causal SNPs with relative risk R ¼ 2 were generated

with the approach described in Price4 for power calcula-

tions.

Our first battery of simulations is based on SNPs sampled

from two subpopulations, with 200 individuals per sub-

population. Case status was assigned to 80 and 20 of the

individuals from subpopulations 1 and 2, respectively.

The remaining individuals were assigned control status.

For the matched-pairs analysis, we paired each case to

the closest control until we obtained 100 matched pairs.

For the other two methods of analyses, we analyzed all

400 individuals. Each method readily detects population

substructure and achieves the desired type I error rate as

L increases (Table 2). pMatch and fMatch successfully

remove the effect of structure with a smaller panel of refer-

ence SNPs than Eigenstrat does (Figure 2A). Indeed, when

a large panel of reference SNPs is available, the GEM proce-
456 The American Journal of Human Genetics 82, 453–463, February
dures are overly conservative; consequently, Eigenstrat is

slightly more powerful than both matching procedures

(Table 2) under these conditions. For SNPs with less infor-

mation about population membership than present in our

simulated reference panels, greater numbers of SNPs would

be required to remove the effects of structure.4

Our second battery of simulations is based on nine

subpopulations distributed along a gradient, designed to

simulate a cline such as the north to south cline observed

in western Europe. The 100 cases are distributed with 2, 4,

6, 7, 9, 12, 15, 20, and 25 individuals in populations 1–9,

respectively. The 300 controls are distributed randomly

across the nine subpopulations. Results from this simula-

tion are qualitatively similar to those shown in Figure 2A

(Table 2). The first two batteries of simulations illustrate

that when the case and control samples are drawn from

the same subpopulations, but with different frequencies,

the effects of substructure can be removed with any

of the three methods described. Even the effects of highly

differentiated SNPs can be removed provided the reference

panel is sufficiently informative.

Our third battery of simulations is also based on a nine

population gradient; however, the cases and controls are

apportioned in a manner that simulates the complexity

of human populations and GWA designs. As in the previ-

ous simulation, we simulate nine populations and draw

300 controls randomly. In contrast, all 50 of the cases are

drawn from populations 6–9. Because of the nature of

this third battery, namely the presence of unmatchable

observations, we analyze the data in two ways: Unmatch-

able observations are removed as described previously; or

unmatchable observations are retained. In choosing only

a single control for each case, pMatch includes only 50

of the controls in the study regardless of the treatment of

outliers. Provided the reference panel is sufficiently infor-

mative, many of these controls will be derived from popu-

lations 6–9. Eigenstrat, on the other hand, uses all of

the data, as will fMatch when unmatchable observations

are retained. For fMatch, this means that cases drawn

from population 6 will tend to have many controls in their

strata sampled from populations 1–5. The remaining cases

will tend to have only one or two controls in their strata.

By grouping the outlying observations, fMatch attempts

to minimize the effect of unmatchable observations. Ei-

genstrat must account for controls sampled from pop-

ulations 1–5 with regression techniques, which are well

known to suffer adverse consequences when they are

extrapolating beyond the range of the data.

When unmatchable observations are retained, pMatch

corrects for the effects of substructure with fewer reference

SNPs than the other two methods (Table 3 and Figure 2B).

Indeed, Eigenstrat fails to remove the effects of population

substructure. By comparing pMatch and fMatch, we see

that the latter has greater power. This makes sense because

fMatch is using more of the data (Table 3).

On the basis of the clustering and rescaling process, most

of the controls from populations 1–5 are unmatchable, and
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such a result is desirable because cases were only drawn from

populations 6–9. In this instance, the size of the matched

analyses is now closer to the nominal level even when L is

small, as expected. Interestingly, there is the considerable

enhancement in power for fMatch and pMatch when

unmatchable individuals are removed, as recommended

by our methods, as opposed to when they are forced to be

retained (Table 3). This occurs because removal of the out-

liers leads to improved performance of the EVD and hence

superior choices of matches in the analysis. In addition,

for fMatch the removal of controls from populations 1–5

leads to a more homogeneous sample that tends to increase

power.

Eigenstrat defines outliers without specific reference to

cases and controls; thus, none of the observations are

unmatchable observations. Nevertheless, if the regression

approach is applied after removal of those observations

declared unmatchable by the fMatch procedure, the

type I error is successfully controlled, and the power is

slightly greater than it is for fMatch (Table 3). This hybrid

approach to analysis has some potential for further

development.
The Ame
GWA of Type 1 Diabetes Data with fMatch

We analyzed 416 cases of T1D,18 derived from the Go-

KinD10 cohort (n ¼ 394) and T1D patients recruited from

the Children’s Hospital of Pittsburgh (n ¼ 28). Samples

were genotyped with the Affymetrix 500K GeneChip. All

identified their ancestors as European. The mean age of on-

set for T1D was 12.2 and 12.7 years of age for the GoKinD

and Pittsburgh cohorts, respectively. Controls genotyped

by the same chip were obtained from the PopGen and

KORA repositories, which consist of 500 individuals from

north Germany (PopGen) and 1644 individuals from

southern Germany (KORA).11–13,19 The four cohorts were

recruited independently of one another. The relevant char-

acteristics of these cohorts are summarized in Table 1.

Stringent quality control reduced the number of SNPs to

284,216 and the number of controls to 2112 (samples were

removed if the rate of missing genotypes exceeded 5%).

To reconstruct ancestry, we chose 23,552 independent or

‘‘tag’’ SNPs by using the H-clust algorithm20 with an r2 cut-

off value of 0.04. Both case and control individuals exhibit

complex population heterogeneity. For example, individ-

uals were included in the PopGen and KORA registry on
Table 2. Size and Power of Tests at Level 0.05

Eigenstrat with FST pMatch with FST fMatch with FST

Statistic Design No. of Markers 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

Size

Two Populations

96 .069 .106 .211 .062 .100 .202 .065 .101 .206

386 .055 .061 .085 .044 .045 .051 .047 .049 .054

1536 .052 .054 .055 .046 .045 .045 .047 .047 .046

6144 .053 .052 .051 .044 .045 .045 .047 .047 .046

12000 .053 .052 .052 .044 .044 .045 .047 .045 .047

24000 .053 .050 .051 .043 .042 .041 .046 .046 .045

Gradient

96 .069 .109 .221 .049 .067 .109 .061 .097 .201

386 .054 .058 .071 .043 .046 .048 .048 .052 .063

1536 .052 .051 .050 .045 .044 .044 .047 .047 .046

6144 .052 .051 .050 .045 .045 .044 .046 .045 .047

12000 .052 .052 .052 .044 .044 .045 .047 .047 .047

24000 .052 .052 .052 .044 .045 .044 .047 .046 .046

Power

Two Populations

96 .783 .710 .683 .693 .635 .620 .754 .685 .659

386 .767 .701 .682 .682 .632 .621 .735 .673 .653

1536 .766 .702 .677 .683 .635 .622 .736 .674 .653

6144 .765 .694 .676 .684 .630 .623 .735 .671 .653

12000 .765 .697 .676 .684 .633 .624 .735 .673 .653

24000 .763 .696 .677 .684 .632 .624 .734 .671 .653

Gradient

96 .939 .917 .833 .886 .872 .804 .922 .900 .814

386 .924 .891 .796 .877 .857 .782 .902 .869 .775

1536 .917 .876 .774 .876 .850 .775 .894 .856 .754

6144 .913 .874 .768 .873 .849 .773 .892 .853 .747

12000 .915 .873 .771 .874 .849 .774 .891 .850 .749

24000 .912 .874 .768 .873 .849 .771 .892 .852 .747

Columns depict the results as FST varies (0.01, 0.03, and 0.1) in the candidate markers. Results are shown for two scenarios: a two-population mixture and

a nine-population gradient. For the size, the expected number of p values smaller than 0.05 is 50.
rican Journal of Human Genetics 82, 453–463, February 2008 457



the basis of residence rather than known German ancestry.

We removed one case individual who had very different

ancestry from the other 415. For 415 cases and 2112 con-

trols, D ¼ 22 dimensions were required to explain the

significant axes of genetic variation. Many of these axes

exhibited extreme outliers (Figure 1A). After removing 53

controls, only three important axes of variation remained.

On the basis of the first two eigenvectors, a cluster of cases

that differs in ancestry from the control sample was clearly

evident (Figure 3A). To identify unmatchable individuals

more completely, we computed the distance between

each case and the nearest control and vice versa on the ba-

sis of three axes of the EVD map. The resulting distribution

of distances indicated that 21 cases could not be matched

to a control with similar ancestry (Figure 4). By repeating

this process of finding the significant eigenvalues and the

corresponding minimum distances between cases and con-

trols in the corresponding axes, we subsequently removed

an additional one case and 15 controls. After excluding

these outliers, only two significant eigenvalues remain

when a significance level of 0.01 was used.

Next, with cluster analysis to identify homogeneous

strata, 2136 individuals were clustered into 26 strata, each

with 20 or more elements and no significant structure

within cluster (p > 0.001). The remaining 301 individuals

were clustered into 24 small clusters. On the basis of these

strata, the data were rescaled and the distance between

cases and matched controls was determined. Those that

Figure 2. False-Positive Rate versus Log of the Number of
Markers Available for Estimating Structure
Results are for Eigenstrat (black), pMatch (blue), and fMatch (red).
The desired nominal rate of 0.05 is plotted as a yellow line. In (A),
a sample derived from two simulated populations is shown. Results
are displayed for markers with two levels of differentiation
FST ¼ 0:1(*) and 0.03 (þ). The former exhibits a higher rate of
errors than the latter for small numbers of markers. In (B), a sample
derived from a gradient of simulated populations is shown. Results
are displayed for the full sample (plotting character ‘‘o’’) and with
unmatchable individuals removed (plotting character ‘‘*’’; this
applies to the matching methods only).
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were considered unmatchable individuals on the basis of

the simulation results were removed (see Appendix). With

this process, an additional 20 cases and 48 controls are

removed from the dataset for fMatch. The resulting dis-

tance between the remaining cases and controls in fMatch

is consistent with expectations for cases and controls

matched within homogeneous strata (data not shown). In

the reduced fMatch sample, two principal axes separate

the German control samples by region and define a space,

spanned by both cases and controls, that facilitates match-

ing (Figure 3B). These dimensions presumably map onto

genetic gradients on the European continent; e.g., the hor-

izontal axis is likely to be related to a north-south gradient

Table 3. Size and Power of the Tests before and after
Removing Outliers, with Eigenstrat, pMatch, and fMatch

Outliers Present

Eigenstrat with

FST

pMatch

with FST

fMatch

with FST

Statistic No. of Markers .01 .03 .1 .01 .03 .1 .01 .03 .1

Size

96 .064 .097 .206 .044 .056 .107 .056 .082 .176

386 .057 .068 .121 .038 .040 .050 .045 .051 .070

1536 .056 .062 .103 .037 .037 .037 .043 .042 .045

6144 .056 .061 .085 .037 .037 .035 .041 .042 .041

12000 .058 .058 .073 .037 .036 .036 .042 .040 .041

24000 .057 .058 .067 .037 .037 .035 .042 .042 .040

100000 .055 .057 .064 .037 .037 .034 .043 .043 .042

Power

96 .804 .753 .650 .590 .579 .511 .770 .726 .623

386 .784 .731 .630 .583 .566 .489 .721 .686 .583

1536 .771 .716 .615 .581 .567 .482 .671 .642 .548

6144 .762 .711 .604 .583 .566 .485 .639 .620 .531

12000 .751 .704 .595 .582 .564 .485 .637 .615 .528

24000 .746 .699 .593 .584 .565 .484 .637 .613 .529

100000 .748 .694 .592 .588 .565 .484 .639 .612 .528

Outliers Removed

Size

96 .061 .090 .195 .037 .036 .035 .044 .043 .042

386 .057 .060 .095 .036 .036 .035 .043 .041 .043

1536 .054 .053 .057 .035 .038 .033 .040 .044 .041

6144 .054 .053 .056 .040 .037 .037 .044 .044 .043

12000 .052 .053 .054 .038 .035 .033 .041 .042 .041

24000 .052 .052 .053 .036 .039 .034 .041 .045 .041

100000 .052 .052 .053 .037 .035 .034 .042 .042 .042

Power

96 .906 .931 .927 .706 .713 .656 .772 .776 .719

386 .873 .885 .870 .698 .713 .656 .771 .769 .726

1536 .856 .857 .834 .700 .716 .660 .771 .774 .727

6144 .849 .850 .829 .703 .716 .666 .771 .774 .729

12000 .843 .843 .818 .703 .713 .663 .769 .767 .726

24000 .840 .840 .817 .701 .715 .667 .771 .775 .726

100000 .835 .834 .813 .700 .719 .669 .772 .776 .728

Columns depict the results as FST varies (.01, .03, and .1) in the candidate

markers. The simulated data are a gradient with nine subpopulations;

controls are drawn from 1–9 and cases are only from 6–9.
2008



because it tends to separate the German samples by north

(PopGen)12 and south (KORA)11 origin.21,22 In the pMatch

sample, one additional axis is needed to explain important

variation (data not shown).

After final removal of outliers and unmatchable individ-

uals for fMatch, cases and controls were stratified on the

basis of their genetic ancestry into 298 strata. Most of the

strata (159) contain a single case matched to several con-

trols. A single case matched to a single control occurred

in 111 strata. A minority of strata (28) contain a single con-

trol matched to multiple cases. For example, in the most

extreme strata, a single case was matched to 71 controls

and a single control was matched to 13 cases. When a sin-

gle case is matched to a large number of controls (or vice

versa), the information gain from the strata is essentially

equivalent to that obtained from a single case matched

to a moderate number of individuals. Nevertheless, condi-

tional logistic regression is valid regardless of the lack of

Figure 4. The Distance between Each Case and the Nearest
Control and Vice Versa Based on Three Principal Components
Are Computed
The distributions differ, and we eliminate 34 cases with distances
to the nearest control greater than 0.075. (A) shows the histogram
of distances between each case and the nearest control. (B) shows
the histogram of distances between each control and the nearest
case.
The Ame
balance in the strata. In all, 373 cases were contrasted

with 1996 controls by conditional logistic regression (Fig-

ure 5, top panel). The results highlight the HLA region,

which contains numerous SNPs achieving GWA signifi-

cance. Variation in the HLA region is well known to

account for a large fraction of the risk for T1D.23–26 No

Figure 5. Transformed p Values after Conditional Logit
Regression Was Performed on the Data Stratified with fMatch
Transformed p values (negative of the log, base 10). Results from
conditional logistic regression on the data stratified with fMatch
(top panel) and pmatch (second panel) are shown. Results ob-
tained with Eigenstrat are shown in the third panel. Results ob-
tained when removing observations with very divergent ancestries
(inferred with the Eigenstrat rule for outliers) from the bulk of the
sample, which was European, are shown in the bottom panel.
Figure 3. Plots of the First Two Eigen-
vector Axes for T1D Data before and after
Removing the Unmatchable Individuals
after Clustering and Rescaling of the
Data
Each case (light blue) has a matched con-
trol (dark blue ¼ South Germany, red ¼
North Germany) in a close neighborhood
after removal of unmatchable individuals;
compare before (A) with after (B).
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other location in the genome contains SNPs with test

statistics meeting reasonable criteria for GWA significance

(%10�7) after ensuring quality genotype calls by visual

inspection of the genotype clusters (see Figures S1 and S2

available online for examples). It should be noted, how-

ever, that visual inspection of genotype clusters is essential

to interpret this Affymetrix ‘‘first-generation’’ genotype

data, a feature other GWA studies with this genotyping

platform also report.27

Results from fMatch agree with our expectations. Other

GWA studies have established that all genetic variation

thus far uncovered, aside from variation in the HLA region,

account for a modest portion of the risk for T1D.28,29

For detecting loci of modest effect with good power, either

sample sizes must be substantial (i.e., thousands of cases

and controls genotyped) or a staged study design must be

employed. The staged design typically sets a significance

level between 0.01 and 0.001 in stage 1, then genotypes

all loci meeting this significance level (and quality-control

criteria) in a second, larger sample.30,31 Treating our study

as stage 1 with a significance level of 0.007,30 results from

fMatch would include SNPs for genotyping in stage 2 from

six out of ten loci now believed to confer risk to T1D.29 Of

the remaining four loci, only one had more than a few

SNPs in the region.

Aside from the HLA region, SNPs in or near PTPN22 (MIM

600716), IL2RA (CD25 [MIM 147730]), and CTLA4 ([MIM

123890]; window ¼ gene location 5 40 Kb) showed

enough signal to be passed to stage 2. The smallest p value

for each gene was 0.000706 (rs2488457), 0.000995

(rs10905669), and 0.000336 (rs231726). The smallest

p values for SNPs close to ‘‘risk SNPs’’ rs2292239 and

rs12708716 were 0.00667 (rs2292239) and 0.00539

(rs11647011) for window ¼ SNP location 5 50 Kb. Could

it be that the signals in these regions occurred by chance?

To answer this question, we performed a simulation exper-

iment. We randomly select from the genome ten inter-

vals that correspond to the same size as the original ten

windows (for the HLA region, we assumed a window of

3 Mb). Then, we count the number of intervals in which

one or more SNPs have p < 0.007 and would thus be geno-

typed in stage 2. We perform this random selection

106 times, counting how many times six or more intervals

would have SNPs genotyped in Stage 2. By this experiment,

we determined that our results would rarely occur by

chance, roughly one in ten thousand times.

A few other observations from these analyses are worth

noting. Within the HLA region, Todd29 cites rs3129934 as

the replicated SNP; our independent data and analyses yield

a p value for association of 7.2 3 10�10 with this SNP; for the

replicated SNP identified in CTLA4, rs3087243, our data

and analyses yield a p value for association of 0.013, and,

as noted above, the replicated SNP rs2292239 produced

a p value of 0.00667 from our data. Although the HLA

region needs no more support, our results provide further

evidence for replication in CTLA4 and at rs2292239. For

genotype cluster plots for the cited SNPs, see Figure S1. In
460 The American Journal of Human Genetics 82, 453–463, February
addition, for all of the loci cited above, we have compared

our data to that reported by the Wellcome Trust Case

Control Consortium.27 For these loci, the allele in excess

in cases is the same for both data sets (data not shown).

Four loci did not pass stage 1 criteria. None of these SNPs

reported by Todd et al.29 as risk loci were on our Affymetrix

genotyping array. Of these four risk SNPs, only rs1893217

in 18p11 was covered well in terms of genotyped SNPs in

substantial linkage disequilibrium (LD) with it. This SNP

is in almost complete LD with rs2542151 according to

HapMap; it passed our QC, but it shows no evidence for

association in our data (p ¼ 0.51). For the proinsulin

precursor gene, INS (MIM 176730), only two SNPs on the

array pass QC and fall in the region, but HapMap contains

no information about their LD with the reported risk SNP,

rs689, and they show no association (p > 0.35). For the

gene encoding interferon-induced helicase C domain-con-

taining protein 1, IFIH1 (MIM 606951), the reported risk

allele shows modest LD with a SNP we genotyped, namely

rs7608315, which shows no association (p ¼ 0.38). Finally,

for the 12q24 region, rs3184504 is identified as the risk

SNP. One SNP in this region passed QC for our data, and

it is modestly associated with risk for T1D (p ¼ 0.046).

The vast majority of the SNPs from this or any relevant

GWA are independent of risk for T1D. Many SNPs from

the HLA regions of chromosome 6 are associated, however.

After eliminating HLA SNPs, ~5% of the association tests are

expected to have p values<0.05. Of the 284,216 tests, 7.0%

were significant at a¼0.05 for fMatch. A moderate excess of

false positives occurs for any reasonable choice of a. Given

the success of the GEM method in the simulations, in terms

of controlling the false-positive rate, we wondered whether

the source of additional false positives could be poor-qual-

ity genotype calls. Indeed, by assessing genotype clusters

for all SNPs producing p values %10�4, we find a rate of

poor calls of 60%–67% (Figure S2). The rate of poor-quality

genotype calls increases as the p value decreases. Predomi-

nantly, the problematic calls occur for the T1D sample.

On the basis of our estimated rate of poor-quality genotype

calls, we believe the excess false-positive rate is attributable

to data-quality issues, not the method.

We also analyzed GWA data by using pMatch and Eigen-

strat and by ignoring population substructure after discard-

ing outliers with the Eigenstrat rule (see Figure 5). As ex-

pected, pMatch shows the lowest rates of positive findings,

whereas ignoring structure yields the most. Like fMatch,

it appears the excess of false positives for pMatch is due to

poor-quality genotype calls. The same is predominantly

true for Eigenstrat, but we note that an ample number of

SNPs producing small p values are not attributable to poor

quality, and this problem is amplified by ignoring structure.

At significance level 0.0001, after visual inspection of geno-

types fMatch has half the false-positive rate of Eigenstrat.

To further validate GEM, we tried a null experiment. We

randomly labeled half of the KORA data as cases and half as

controls and repeated the matching analysis. Removal of

72 outliers reduced the number of significant eigenvalues
2008



required to explain the variation from 24 to 2. After this

simplification, only 12 unmatchable individuals remained.

All three methods of analysis (Eigenstrat, Pmatch, and

fMatch) produced type I error rates that were on target.
Discussion

Our GWA analyses of T1D are meant to accomplish two

goals. First, they illustrate the utility of ancestry matching

in the face of a very difficult problem, that being when cases

are sampled in a region quite different from the region of

the controls. In our case, the T1D sample comes from any

American of nominal European ancestry, whereas the con-

trols were recruited among residents of Germany. Such con-

stellations can also arise even if cases and controls are sam-

pled from the same geographical region. We would expect

the example to be especially salient for American samples.

Second, we wished to use the results to evaluate reported

T1D risk loci and, in later analyses, discover new loci. The

results show that genetic or ancestry matching can be an

important ingredient in the toolbox of researchers who

are performing GWA analyses. Moreover, our results do

lend support for previous GWA findings for T1D.28,29

We do not yet know whether our analyses have identified

any new risk loci for T1D. Although it seems unlikely given

the modest sample of cases, a substantial number of con-

trols have been analyzed. Moreover, for a rare disease like

T1D, using unscreened instead of screened controls has al-

most no impact on power.32 We plan various kinds of stage

2 analyses to assess the association signals from our GWA

results. In addition, by agreement the data generated by

our project will be reported back to the GoKinD database,

and GoKinD will make the data available to qualified in-

vestigators. Thus, these data will shortly be available to

the research community, and we will be pleased to share

detailed results upon request.

We have described how to use genetic matching to en-

hance a case-control study. We note, however, that these

methods can also be used for the analysis of quantitative

traits. Once homogeneous clusters are identified, they

can be entered into a model as block effects, and the quan-

titative trait can be analyzed with standard statistical tools,

such as analysis of variance.

Theory, simulations, and real-data analyses suggest that

genetic matching is useful and powerful for GWA, espe-

cially when the samples of cases and controls cannot

be guaranteed to be drawn from the same population. It

can diminish the false-positive rate, sometimes substan-

tially, and have only modest impact on power. Among

others,33–36 methods similar to Eigenstrat4 also limit the

impact of population structure, but for challenging de-

signs, they cannot be expected to completely control the

false-positive rate. Perhaps the gold standard for GWA

studies should be to evaluate the data with both regression

methods such as Eigenstrat and epidemiological methods

such as fMatch. When the results of these methods agree,
The Ame
researchers have greater assurance of validity; it is when

the results diverge that we should be wary.
Appendix

EVD of Allele Counts

Using allele counts for SNPs l ¼ 1, ., L, and individuals

i ¼ 1, ., N, create an N 3 L matrix X. For pl, the lth allele

frequency, center allele counts in column l by subtracting

2pl and scale by dividing by ð2plð1� plÞÞ1=2. Find the EVD

of XXt ¼ UlUt . In the D dimensional space defined by

the top D eigenvectors, the ‘‘ancestry’’ value for the ith sub-

ject is determined by the ith row of the eigenvectors ui1, .,

uiD. The dth eigenvalue, ld, determines the scaling of dis-

tances in the dth dimension. These coordinates are used

for matching.
Model for Population Stratification

The mean of allele frequencies from a set of populations is

assumed to be the allele frequency of an ancestral popula-

tion. Individual populations have each diverged from the

ancestral population over time, with fixation index FST ,

a measure of population differentiation. Within a subpopu-

lation j, suppose that allele counts are independent and

identically distributed and that allele a is drawn with prob-

ability pj. If X is counting allele a, then X � Binomialð2,pjÞ.
Let P be the random variable that varies across subpopu-

lations, with pj as the realized value in subpopulation

j: P � Betaða1,a2), a1 þ a2 ¼ 1=FST � 1. Assume that we

have the minor allele frequencies of an ancestral popula-

tion p.loci (in our simulations p.loci is uniform between

.05 and .5) at L loci. From the ancestral population J, sub-

populations have been formed. By knowing FST , for each

marker l we can define a1,l ¼ p:locil 3 ð1=FST � 1Þ and

a2,l ¼ ð1� p:locilÞ3ð1=FST � 1Þ and generate the alleles as

described above. When used in simulation studies, this is

often called the Balding-Nichols model.17 For simulation

of a cline (or a gradient), it is enough to order pjl so that

p11%.%pJl for each l.
Hypothesis Test for Population Structure

A formal significance test for population structure is based

on a theoretical result for the eigenvalue distribution of

a null sample covariance matrix.6,37 For a homogeneous

population, the largest eigenvalue, properly normed, ap-

proximately follows the Tracy-Widom distribution37

Wd ¼ ðld � mNLÞ=sNL with centering and scaling parameters

that depend on both N and L, mNL ¼ ððL� 1Þ1=2 þN1=2Þ2

and sNL ¼ ððL� 1Þ1=2 þN1=2Þð1=ððL� 1Þ1=2Þ þ 1=N1=2Þ1=3.

We can test the null hypothesis of population homoge-

neity against an alternative hypothesis of population het-

erogeneity. The sample covariance matrix S follows a

ðN � 1Þ3ðN � 1ÞWishart distribution. The test for popula-

tion structure will be applied iteratively (i.e., the leading

eigenvalue, then the second and so on). If we find the first

d eigenvalues l1,.,ld to be significant, we test ldþ1 as
rican Journal of Human Genetics 82, 453–463, February 2008 461



though S were an ðN � d � 1Þ3ðN � d � 1ÞWishart matrix.

If an eigenvalue is not significant, the smaller eigenvalues

will not be significant either.

Removing Unmatchable Individuals

EVD determines the distance between individuals on the

basis of the top D eigenvectors and eigenvalues. To stabilize

the distance metric, we use the normed eigenvalues, Wd,

plus a constant a, chosen to ensure the weights are positive.

The distance between individuals i and i’ is calculated as

gði,i0Þ ¼
PD

d¼1ð
n

Wd þ aÞðuid � ui0dÞ2 1=2
�

.

To rescale the distances, let Sk3 1,2,.,Ngf be the indices

of individuals in the k0th cluster. Let rk be the number of in-

dividuals in the k0th cluster. For scaling subject i ˛Sk , we

use the eigenvector values ðui1,.,uiDÞ but not the eigen-

values. Assume that the eigenvector representation of

each individual consists of an ancestry signal plus random

noise: uid ¼ mid þ 3id.

For homogeneous data, because all individuals came

from a common source, the ancestry signal is 0 and the

representation consists simply of random noise uid ¼ 3id.

Our target is to identify approximately homogeneous

subpopulations that have little or no diversity for ancestry.

If the clustering is successful, the signal of each individual

in subset Sk can be approximated by udk ¼
P

i3Sk
uid=rk, and

the noise can be approximated by uid � udk. But notice

that EVD automatically scales the eigenvectors so thatP
i
u2

id ¼ 1 and ud ¼ 0. A traditional sum of squares decom-

position leads to

1 ¼
X

i

u2
id ¼

X
k

X
i ˛Sk

ðuid � udkÞ2 þ
X

k

rku
2
dk,

i.e., the total sum of squares (SSTotal) equals the sum of

squares attributable to random variation or error (SSError)

plus the sum of squares attributable to ancestry differences

(SSModel). Unit scaling of SSTotal causes the distances be-

tween individuals from heterogeneous populations to be

uncomparable to distances in homogeneous populations.

For example, if the sample derives from two highly differen-

tiated populations so that SSError ¼ 0.01 and SSModel ¼
0.99, then the expected distance between two individuals

with common ancestry is ~0.01/n. Alternatively, if the

populations have identical ancestry, then the expected

distance between two individuals is ~1/n. For comparing

to a homogeneous scaling, we wish to rescale the random

noise so that SSError is 1. It follows that the data will

be rescaled equivalently to homogeneous data if we set

c2
d ¼

P
k

P
i˛Sk

ðuid�udkÞ2 and rescale the data such that

u�id ¼ uid=cd:

In practice, udk provides a good estimate of the signal

only when the cluster size is sufficiently large, say greater

than 10. Hence, to compute c2
d , include only those clusters

Sk including 10 or more elements in the sum and then

multiply by n=
P

k
ðrk � 1Þ to account for the missing clus-

ters. Notice that we scale differently for each of the d di-

mensions to stretch and shrink accordingly to get the

proper scaling of the data.
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In the final step, find the distances between individuals

with the u�id instead of uid and use the expected value of

normed eigenvalues W1,.,WD obtained from the simula-

tion, instead of the actual eigenvalues. Match rescaled data

with fMatch or pMatch and measure the distances between

cases and controls. Any individuals with distances in this

metric exceeding the 99.9th quartile of the null distribu-

tion of distances are declared unmatchable.
Supplemental Data

Two figures are available at http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

CHIAMO,http://www.stats.ox.ac.uk/%7Emarchini/software/gwas/

chiamo.html

dbGaP, http://www.ncbi.nlm.nih.gov/sites/entrez?db¼gap

GEM, http://wpicr.wpic.pitt.edu/WPICCompGen/

GoKinD, http://www.jdrf.org/gokind

HapMap Frequencies, http://www.hapmap.org/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim

Optmatch, http://cran.r-project.org/doc/packages/

T1Dbase, http://t1dbase.org/
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